Metamath Proof Explorer


Theorem metidss

Description: As a relation, the metric identification is a subset of a Cartesian product. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion metidss DPsMetX~MetDX×X

Proof

Step Hyp Ref Expression
1 metidval DPsMetX~MetD=xy|xXyXxDy=0
2 opabssxp xy|xXyXxDy=0X×X
3 1 2 eqsstrdi DPsMetX~MetDX×X