Metamath Proof Explorer


Theorem metidss

Description: As a relation, the metric identification is a subset of a Cartesian product. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion metidss D PsMet X ~ Met D X × X

Proof

Step Hyp Ref Expression
1 metidval D PsMet X ~ Met D = x y | x X y X x D y = 0
2 opabssxp x y | x X y X x D y = 0 X × X
3 1 2 eqsstrdi D PsMet X ~ Met D X × X