Metamath Proof Explorer


Theorem metidv

Description: A and B identify by the metric D if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion metidv DPsMetXAXBXA~MetDBADB=0

Proof

Step Hyp Ref Expression
1 eleq1 a=AaXAX
2 eleq1 b=BbXBX
3 1 2 bi2anan9 a=Ab=BaXbXAXBX
4 oveq12 a=Ab=BaDb=ADB
5 4 eqeq1d a=Ab=BaDb=0ADB=0
6 3 5 anbi12d a=Ab=BaXbXaDb=0AXBXADB=0
7 eqid ab|aXbXaDb=0=ab|aXbXaDb=0
8 6 7 brabga AXBXAab|aXbXaDb=0BAXBXADB=0
9 8 adantl DPsMetXAXBXAab|aXbXaDb=0BAXBXADB=0
10 metidval DPsMetX~MetD=ab|aXbXaDb=0
11 10 adantr DPsMetXAXBX~MetD=ab|aXbXaDb=0
12 11 breqd DPsMetXAXBXA~MetDBAab|aXbXaDb=0B
13 ibar AXBXADB=0AXBXADB=0
14 13 adantl DPsMetXAXBXADB=0AXBXADB=0
15 9 12 14 3bitr4d DPsMetXAXBXA~MetDBADB=0