Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋 ) ) |
2 |
|
eleq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) |
3 |
1 2
|
bi2anan9 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
4 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 𝐷 𝑏 ) = ( 𝐴 𝐷 𝐵 ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ ( 𝐴 𝐷 𝐵 ) = 0 ) ) |
6 |
3 5
|
anbi12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) = 0 ) ) ) |
7 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } |
8 |
6 7
|
brabga |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } 𝐵 ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) = 0 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } 𝐵 ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) = 0 ) ) ) |
10 |
|
metidval |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } ) |
11 |
10
|
adantr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ~Met ‘ 𝐷 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } ) |
12 |
11
|
breqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ~Met ‘ 𝐷 ) 𝐵 ↔ 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ ( 𝑎 𝐷 𝑏 ) = 0 ) } 𝐵 ) ) |
13 |
|
ibar |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) = 0 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) = 0 ) ) ) |
15 |
9 12 14
|
3bitr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ~Met ‘ 𝐷 ) 𝐵 ↔ ( 𝐴 𝐷 𝐵 ) = 0 ) ) |