Metamath Proof Explorer


Theorem metreg

Description: A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypothesis metnrm.j J=MetOpenD
Assertion metreg D∞MetXJReg

Proof

Step Hyp Ref Expression
1 metnrm.j J=MetOpenD
2 1 metnrm D∞MetXJNrm
3 1 methaus D∞MetXJHaus
4 haust1 JHausJFre
5 3 4 syl D∞MetXJFre
6 nrmreg JNrmJFreJReg
7 2 5 6 syl2anc D∞MetXJReg