Database
BASIC TOPOLOGY
Metric spaces
Topology on the reals
metreg
Next ⟩
addcnlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
metreg
Description:
A metric space is regular.
(Contributed by
Mario Carneiro
, 29-Dec-2016)
Ref
Expression
Hypothesis
metnrm.j
⊢
J
=
MetOpen
⁡
D
Assertion
metreg
⊢
D
∈
∞Met
⁡
X
→
J
∈
Reg
Proof
Step
Hyp
Ref
Expression
1
metnrm.j
⊢
J
=
MetOpen
⁡
D
2
1
metnrm
⊢
D
∈
∞Met
⁡
X
→
J
∈
Nrm
3
1
methaus
⊢
D
∈
∞Met
⁡
X
→
J
∈
Haus
4
haust1
⊢
J
∈
Haus
→
J
∈
Fre
5
3
4
syl
⊢
D
∈
∞Met
⁡
X
→
J
∈
Fre
6
nrmreg
⊢
J
∈
Nrm
∧
J
∈
Fre
→
J
∈
Reg
7
2
5
6
syl2anc
⊢
D
∈
∞Met
⁡
X
→
J
∈
Reg