Metamath Proof Explorer


Theorem mgmb1mgm1

Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020) (Revised by AV, 7-Feb-2020)

Ref Expression
Hypotheses mgmb1mgm1.b B=BaseM
mgmb1mgm1.p +˙=+M
Assertion mgmb1mgm1 MMgmZB+˙FnB×BB=Z+˙=ZZZ

Proof

Step Hyp Ref Expression
1 mgmb1mgm1.b B=BaseM
2 mgmb1mgm1.p +˙=+M
3 eqid +𝑓M=+𝑓M
4 1 2 3 plusfeq +˙FnB×B+𝑓M=+˙
5 1 3 mgmplusf MMgm+𝑓M:B×BB
6 feq1 +𝑓M=+˙+𝑓M:B×BB+˙:B×BB
7 5 6 imbitrid +𝑓M=+˙MMgm+˙:B×BB
8 4 7 syl +˙FnB×BMMgm+˙:B×BB
9 8 impcom MMgm+˙FnB×B+˙:B×BB
10 9 3adant2 MMgmZB+˙FnB×B+˙:B×BB
11 simp2 MMgmZB+˙FnB×BZB
12 intopsn +˙:B×BBZBB=Z+˙=ZZZ
13 10 11 12 syl2anc MMgmZB+˙FnB×BB=Z+˙=ZZZ