Metamath Proof Explorer


Theorem mgpbas

Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014) (Revised by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mgpbas.1 M = mulGrp R
mgpbas.2 B = Base R
Assertion mgpbas B = Base M

Proof

Step Hyp Ref Expression
1 mgpbas.1 M = mulGrp R
2 mgpbas.2 B = Base R
3 eqid R = R
4 1 3 mgpval M = R sSet + ndx R
5 baseid Base = Slot Base ndx
6 basendxnplusgndx Base ndx + ndx
7 4 5 6 setsplusg Base R = Base M
8 2 7 eqtri B = Base M