Metamath Proof Explorer


Theorem mirfv

Description: Value of the point inversion function M . Definition 7.5 of Schwabhauser p. 49. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mirfv.b φBP
Assertion mirfv φMB=ιzP|A-˙z=A-˙BAzIB

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mirfv.b φBP
10 1 2 3 4 5 6 7 mirval φSA=yPιzP|A-˙z=A-˙yAzIy
11 8 10 eqtrid φM=yPιzP|A-˙z=A-˙yAzIy
12 simplr φy=BzPy=B
13 12 oveq2d φy=BzPA-˙y=A-˙B
14 13 eqeq2d φy=BzPA-˙z=A-˙yA-˙z=A-˙B
15 12 oveq2d φy=BzPzIy=zIB
16 15 eleq2d φy=BzPAzIyAzIB
17 14 16 anbi12d φy=BzPA-˙z=A-˙yAzIyA-˙z=A-˙BAzIB
18 17 riotabidva φy=BιzP|A-˙z=A-˙yAzIy=ιzP|A-˙z=A-˙BAzIB
19 riotaex ιzP|A-˙z=A-˙BAzIBV
20 19 a1i φιzP|A-˙z=A-˙BAzIBV
21 11 18 9 20 fvmptd φMB=ιzP|A-˙z=A-˙BAzIB