Metamath Proof Explorer


Theorem mirhl2

Description: Deduce half-line relation from mirror point. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirhl.m M=SA
mirhl.k K=hl𝒢G
mirhl.a φAP
mirhl.x φXP
mirhl.y φYP
mirhl.z φZP
mirhl2.1 φXA
mirhl2.2 φYA
mirhl2.3 φAXIMY
Assertion mirhl2 φXKAY

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirhl.m M=SA
8 mirhl.k K=hl𝒢G
9 mirhl.a φAP
10 mirhl.x φXP
11 mirhl.y φYP
12 mirhl.z φZP
13 mirhl2.1 φXA
14 mirhl2.2 φYA
15 mirhl2.3 φAXIMY
16 1 2 3 4 5 6 9 7 11 mircl φMYP
17 1 2 3 4 5 6 9 7 11 14 mirne φMYA
18 1 2 3 6 10 9 16 15 tgbtwncom φAMYIX
19 1 2 3 4 5 6 9 7 11 mirbtwn φAMYIY
20 1 3 6 16 9 10 11 17 18 19 tgbtwnconn2 φXAIYYAIX
21 1 3 8 10 11 9 6 ishlg φXKAYXAYAXAIYYAIX
22 13 14 20 21 mpbir3and φXKAY