Metamath Proof Explorer


Theorem mndplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)

Ref Expression
Hypotheses mndplusf.1 B=BaseG
mndplusf.2 ˙=+𝑓G
Assertion mndplusf GMnd˙:B×BB

Proof

Step Hyp Ref Expression
1 mndplusf.1 B=BaseG
2 mndplusf.2 ˙=+𝑓G
3 mndmgm GMndGMgm
4 1 2 mgmplusf GMgm˙:B×BB
5 3 4 syl GMnd˙:B×BB