Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Monoid rings
mnringaddgdOLD
Metamath Proof Explorer
Description: Obsolete version of mnringaddgd as of 1-Nov-2024. The additive
operation of a monoid ring. (Contributed by Rohan Ridenour , 14-May-2024) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
mnringaddgd.1
⊢ F = R MndRing M
mnringaddgd.2
⊢ A = Base M
mnringaddgd.3
⊢ V = R freeLMod A
mnringaddgd.4
⊢ φ → R ∈ U
mnringaddgd.5
⊢ φ → M ∈ W
Assertion
mnringaddgdOLD
⊢ φ → + V = + F
Proof
Step
Hyp
Ref
Expression
1
mnringaddgd.1
⊢ F = R MndRing M
2
mnringaddgd.2
⊢ A = Base M
3
mnringaddgd.3
⊢ V = R freeLMod A
4
mnringaddgd.4
⊢ φ → R ∈ U
5
mnringaddgd.5
⊢ φ → M ∈ W
6
df-plusg
⊢ + 𝑔 = Slot 2
7
2nn
⊢ 2 ∈ ℕ
8
2re
⊢ 2 ∈ ℝ
9
2lt3
⊢ 2 < 3
10
8 9
ltneii
⊢ 2 ≠ 3
11
mulrndx
⊢ ⋅ ndx = 3
12
10 11
neeqtrri
⊢ 2 ≠ ⋅ ndx
13
1 6 7 12 2 3 4 5
mnringnmulrdOLD
⊢ φ → + V = + F