Metamath Proof Explorer


Theorem mnringaddgdOLD

Description: Obsolete version of mnringaddgd as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringaddgd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringaddgd.2 A = Base M
mnringaddgd.3 V = R freeLMod A
mnringaddgd.4 φ R U
mnringaddgd.5 φ M W
Assertion mnringaddgdOLD φ + V = + F

Proof

Step Hyp Ref Expression
1 mnringaddgd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringaddgd.2 A = Base M
3 mnringaddgd.3 V = R freeLMod A
4 mnringaddgd.4 φ R U
5 mnringaddgd.5 φ M W
6 df-plusg + 𝑔 = Slot 2
7 2nn 2
8 2re 2
9 2lt3 2 < 3
10 8 9 ltneii 2 3
11 mulrndx ndx = 3
12 10 11 neeqtrri 2 ndx
13 1 6 7 12 2 3 4 5 mnringnmulrdOLD φ + V = + F