Metamath Proof Explorer


Theorem mnringbasefsuppd

Description: Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefsuppd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringbasefsuppd.2 B=BaseF
mnringbasefsuppd.3 0˙=0R
mnringbasefsuppd.4 φRU
mnringbasefsuppd.5 φMW
mnringbasefsuppd.6 φXB
Assertion mnringbasefsuppd φfinSupp0˙X

Proof

Step Hyp Ref Expression
1 mnringbasefsuppd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringbasefsuppd.2 B=BaseF
3 mnringbasefsuppd.3 0˙=0R
4 mnringbasefsuppd.4 φRU
5 mnringbasefsuppd.5 φMW
6 mnringbasefsuppd.6 φXB
7 eqid BaseM=BaseM
8 eqid BaseR=BaseR
9 1 2 7 8 3 4 5 mnringelbased φXBXBaseRBaseMfinSupp0˙X
10 6 9 mpbid φXBaseRBaseMfinSupp0˙X
11 10 simprd φfinSupp0˙X