Metamath Proof Explorer


Theorem mnringnmulrdOLD

Description: Obsolete version of mnringnmulrd as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses mnringnmulrdOLD.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringnmulrdOLD.2 E = Slot N
mnringnmulrdOLD.3 N
mnringnmulrdOLD.4 N ndx
mnringnmulrdOLD.5 A = Base M
mnringnmulrdOLD.6 V = R freeLMod A
mnringnmulrdOLD.7 φ R U
mnringnmulrdOLD.8 φ M W
Assertion mnringnmulrdOLD φ E V = E F

Proof

Step Hyp Ref Expression
1 mnringnmulrdOLD.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringnmulrdOLD.2 E = Slot N
3 mnringnmulrdOLD.3 N
4 mnringnmulrdOLD.4 N ndx
5 mnringnmulrdOLD.5 A = Base M
6 mnringnmulrdOLD.6 V = R freeLMod A
7 mnringnmulrdOLD.7 φ R U
8 mnringnmulrdOLD.8 φ M W
9 2 3 ndxid E = Slot E ndx
10 2 3 ndxarg E ndx = N
11 10 4 eqnetri E ndx ndx
12 9 11 setsnid E V = E V sSet ndx x Base V , y Base V V a A , b A i A if i = a + M b x a R y b 0 R
13 eqid R = R
14 eqid 0 R = 0 R
15 eqid + M = + M
16 eqid Base V = Base V
17 1 13 14 5 15 6 16 7 8 mnringvald φ F = V sSet ndx x Base V , y Base V V a A , b A i A if i = a + M b x a R y b 0 R
18 17 fveq2d φ E F = E V sSet ndx x Base V , y Base V V a A , b A i A if i = a + M b x a R y b 0 R
19 12 18 eqtr4id φ E V = E F