Metamath Proof Explorer


Theorem mnuop23d

Description: Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop23d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuop23d.2 φUM
mnuop23d.3 φAU
mnuop23d.4 φFV
Assertion mnuop23d φwU𝒫AwiAvUivvFuFiuuw

Proof

Step Hyp Ref Expression
1 mnuop23d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuop23d.2 φUM
3 mnuop23d.3 φAU
4 mnuop23d.4 φFV
5 1 2 3 mnuop123d φ𝒫AUfwU𝒫AwiAvUivvfufiuuw
6 5 simprd φfwU𝒫AwiAvUivvfufiuuw
7 eleq2 f=FvfvF
8 7 anbi2d f=FivvfivvF
9 8 rexbidv f=FvUivvfvUivvF
10 rexeq f=FufiuuwuFiuuw
11 9 10 imbi12d f=FvUivvfufiuuwvUivvFuFiuuw
12 11 ralbidv f=FiAvUivvfufiuuwiAvUivvFuFiuuw
13 12 anbi2d f=F𝒫AwiAvUivvfufiuuw𝒫AwiAvUivvFuFiuuw
14 13 rexbidv f=FwU𝒫AwiAvUivvfufiuuwwU𝒫AwiAvUivvFuFiuuw
15 14 spcgv FVfwU𝒫AwiAvUivvfufiuuwwU𝒫AwiAvUivvFuFiuuw
16 4 6 15 sylc φwU𝒫AwiAvUivvFuFiuuw