Metamath Proof Explorer


Theorem mnutrcld

Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnutrcld.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnutrcld.2 φUM
mnutrcld.3 φAU
mnutrcld.4 φBA
Assertion mnutrcld φBU

Proof

Step Hyp Ref Expression
1 mnutrcld.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnutrcld.2 φUM
3 mnutrcld.3 φAU
4 mnutrcld.4 φBA
5 1 2 3 mnuunid φAU
6 elssuni BABA
7 4 6 syl φBA
8 1 2 5 7 mnussd φBU