Metamath Proof Explorer


Theorem modabs2

Description: Absorption law for modulo. (Contributed by NM, 29-Dec-2008)

Ref Expression
Assertion modabs2 AB+AmodBmodB=AmodB

Proof

Step Hyp Ref Expression
1 rpre B+B
2 1 leidd B+BB
3 2 adantl AB+BB
4 modabs AB+B+BBAmodBmodB=AmodB
5 4 ex AB+B+BBAmodBmodB=AmodB
6 5 3anidm23 AB+BBAmodBmodB=AmodB
7 3 6 mpd AB+AmodBmodB=AmodB