Metamath Proof Explorer


Theorem modabs

Description: Absorption law for modulo. (Contributed by NM, 29-Dec-2008)

Ref Expression
Assertion modabs AB+C+BCAmodBmodC=AmodB

Proof

Step Hyp Ref Expression
1 modcl AB+AmodB
2 1 anim1i AB+C+AmodBC+
3 2 3impa AB+C+AmodBC+
4 3 adantr AB+C+BCAmodBC+
5 modge0 AB+0AmodB
6 5 3adant3 AB+C+0AmodB
7 6 adantr AB+C+BC0AmodB
8 1 3adant3 AB+C+AmodB
9 8 adantr AB+C+BCAmodB
10 rpre B+B
11 10 3ad2ant2 AB+C+B
12 11 adantr AB+C+BCB
13 rpre C+C
14 13 3ad2ant3 AB+C+C
15 14 adantr AB+C+BCC
16 modlt AB+AmodB<B
17 16 3adant3 AB+C+AmodB<B
18 17 adantr AB+C+BCAmodB<B
19 simpr AB+C+BCBC
20 9 12 15 18 19 ltletrd AB+C+BCAmodB<C
21 modid AmodBC+0AmodBAmodB<CAmodBmodC=AmodB
22 4 7 20 21 syl12anc AB+C+BCAmodBmodC=AmodB