Metamath Proof Explorer


Theorem mof0ALT

Description: Alternate proof for mof0 with stronger requirements on distinct variables. Uses mo4 . (Contributed by Zhi Wang, 19-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mof0ALT *ff:A

Proof

Step Hyp Ref Expression
1 f00 f:Af=A=
2 1 simplbi f:Af=
3 f00 g:Ag=A=
4 3 simplbi g:Ag=
5 eqtr3 f=g=f=g
6 2 4 5 syl2an f:Ag:Af=g
7 6 gen2 fgf:Ag:Af=g
8 feq1 f=gf:Ag:A
9 8 mo4 *ff:Afgf:Ag:Af=g
10 7 9 mpbir *ff:A