Metamath Proof Explorer


Theorem mofsn2

Description: There is at most one function into a singleton. An unconditional variant of mofsn , i.e., the singleton could be empty if Y is a proper class. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mofsn2 B=Y*ff:AB

Proof

Step Hyp Ref Expression
1 mofsn YV*ff:AY
2 1 adantl B=YYV*ff:AY
3 feq3 B=Yf:ABf:AY
4 3 mobidv B=Y*ff:AB*ff:AY
5 4 adantr B=YYV*ff:AB*ff:AY
6 2 5 mpbird B=YYV*ff:AB
7 simpl B=Y¬YVB=Y
8 snprc ¬YVY=
9 8 biimpi ¬YVY=
10 9 adantl B=Y¬YVY=
11 7 10 eqtrd B=Y¬YVB=
12 mof02 B=*ff:AB
13 11 12 syl B=Y¬YV*ff:AB
14 6 13 pm2.61dan B=Y*ff:AB