Metamath Proof Explorer


Theorem mopntopon

Description: The set of open sets of a metric space X is a topology on X . Remark in Kreyszig p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis mopnval.1 J=MetOpenD
Assertion mopntopon D∞MetXJTopOnX

Proof

Step Hyp Ref Expression
1 mopnval.1 J=MetOpenD
2 1 mopnval D∞MetXJ=topGenranballD
3 blbas D∞MetXranballDTopBases
4 tgtopon ranballDTopBasestopGenranballDTopOnranballD
5 3 4 syl D∞MetXtopGenranballDTopOnranballD
6 unirnbl D∞MetXranballD=X
7 6 fveq2d D∞MetXTopOnranballD=TopOnX
8 5 7 eleqtrd D∞MetXtopGenranballDTopOnX
9 2 8 eqeltrd D∞MetXJTopOnX