Metamath Proof Explorer


Theorem moriotass

Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion moriotass ABxAφ*xBφιxA|φ=ιxB|φ

Proof

Step Hyp Ref Expression
1 ssrexv ABxAφxBφ
2 1 imp ABxAφxBφ
3 2 3adant3 ABxAφ*xBφxBφ
4 simp3 ABxAφ*xBφ*xBφ
5 reu5 ∃!xBφxBφ*xBφ
6 3 4 5 sylanbrc ABxAφ*xBφ∃!xBφ
7 riotass ABxAφ∃!xBφιxA|φ=ιxB|φ
8 6 7 syld3an3 ABxAφ*xBφιxA|φ=ιxB|φ