Metamath Proof Explorer


Theorem mpaacl

Description: Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaacl A𝔸minPoly𝔸APoly

Proof

Step Hyp Ref Expression
1 mpaalem A𝔸minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1
2 1 simpld A𝔸minPoly𝔸APoly