Metamath Proof Explorer


Theorem mpaacl

Description: Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaacl A 𝔸 minPoly 𝔸 A Poly

Proof

Step Hyp Ref Expression
1 mpaalem A 𝔸 minPoly 𝔸 A Poly deg minPoly 𝔸 A = deg 𝔸 A minPoly 𝔸 A A = 0 coeff minPoly 𝔸 A deg 𝔸 A = 1
2 1 simpld A 𝔸 minPoly 𝔸 A Poly