Metamath Proof Explorer


Theorem mpllmod

Description: The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p P=ImPolyR
Assertion mpllmod IVRRingPLMod

Proof

Step Hyp Ref Expression
1 mplgrp.p P=ImPolyR
2 eqid ImPwSerR=ImPwSerR
3 simpl IVRRingIV
4 simpr IVRRingRRing
5 2 3 4 psrlmod IVRRingImPwSerRLMod
6 eqid BaseP=BaseP
7 2 1 6 3 4 mpllss IVRRingBasePLSubSpImPwSerR
8 1 2 6 mplval2 P=ImPwSerR𝑠BaseP
9 eqid LSubSpImPwSerR=LSubSpImPwSerR
10 8 9 lsslmod ImPwSerRLModBasePLSubSpImPwSerRPLMod
11 5 7 10 syl2anc IVRRingPLMod