Metamath Proof Explorer


Theorem mplval2

Description: Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplval2.p P=ImPolyR
mplval2.s S=ImPwSerR
mplval2.u U=BaseP
Assertion mplval2 P=S𝑠U

Proof

Step Hyp Ref Expression
1 mplval2.p P=ImPolyR
2 mplval2.s S=ImPwSerR
3 mplval2.u U=BaseP
4 eqid BaseS=BaseS
5 eqid 0R=0R
6 1 2 4 5 3 mplbas U=fBaseS|finSupp0Rf
7 1 2 4 5 6 mplval P=S𝑠U