Metamath Proof Explorer


Theorem mpoeq123

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013) (Revised by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion mpoeq123 A = D x A B = E y B C = F x A , y B C = x D , y E F

Proof

Step Hyp Ref Expression
1 nfv x A = D
2 nfra1 x x A B = E y B C = F
3 1 2 nfan x A = D x A B = E y B C = F
4 nfv y A = D
5 nfcv _ y A
6 nfv y B = E
7 nfra1 y y B C = F
8 6 7 nfan y B = E y B C = F
9 5 8 nfralw y x A B = E y B C = F
10 4 9 nfan y A = D x A B = E y B C = F
11 nfv z A = D x A B = E y B C = F
12 rsp x A B = E y B C = F x A B = E y B C = F
13 rsp y B C = F y B C = F
14 eqeq2 C = F z = C z = F
15 13 14 syl6 y B C = F y B z = C z = F
16 15 pm5.32d y B C = F y B z = C y B z = F
17 eleq2 B = E y B y E
18 17 anbi1d B = E y B z = F y E z = F
19 16 18 sylan9bbr B = E y B C = F y B z = C y E z = F
20 12 19 syl6 x A B = E y B C = F x A y B z = C y E z = F
21 20 pm5.32d x A B = E y B C = F x A y B z = C x A y E z = F
22 eleq2 A = D x A x D
23 22 anbi1d A = D x A y E z = F x D y E z = F
24 21 23 sylan9bbr A = D x A B = E y B C = F x A y B z = C x D y E z = F
25 anass x A y B z = C x A y B z = C
26 anass x D y E z = F x D y E z = F
27 24 25 26 3bitr4g A = D x A B = E y B C = F x A y B z = C x D y E z = F
28 3 10 11 27 oprabbid A = D x A B = E y B C = F x y z | x A y B z = C = x y z | x D y E z = F
29 df-mpo x A , y B C = x y z | x A y B z = C
30 df-mpo x D , y E F = x y z | x D y E z = F
31 28 29 30 3eqtr4g A = D x A B = E y B C = F x A , y B C = x D , y E F