Metamath Proof Explorer


Theorem mpomptx

Description: Express a two-argument function as a one-argument function, or vice-versa. In this version B ( x ) is not assumed to be constant w.r.t x . (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis mpompt.1 z=xyC=D
Assertion mpomptx zxAx×BC=xA,yBD

Proof

Step Hyp Ref Expression
1 mpompt.1 z=xyC=D
2 df-mpt zxAx×BC=zw|zxAx×Bw=C
3 df-mpo xA,yBD=xyw|xAyBw=D
4 eliunxp zxAx×Bxyz=xyxAyB
5 4 anbi1i zxAx×Bw=Cxyz=xyxAyBw=C
6 19.41vv xyz=xyxAyBw=Cxyz=xyxAyBw=C
7 anass z=xyxAyBw=Cz=xyxAyBw=C
8 1 eqeq2d z=xyw=Cw=D
9 8 anbi2d z=xyxAyBw=CxAyBw=D
10 9 pm5.32i z=xyxAyBw=Cz=xyxAyBw=D
11 7 10 bitri z=xyxAyBw=Cz=xyxAyBw=D
12 11 2exbii xyz=xyxAyBw=Cxyz=xyxAyBw=D
13 5 6 12 3bitr2i zxAx×Bw=Cxyz=xyxAyBw=D
14 13 opabbii zw|zxAx×Bw=C=zw|xyz=xyxAyBw=D
15 dfoprab2 xyw|xAyBw=D=zw|xyz=xyxAyBw=D
16 14 15 eqtr4i zw|zxAx×Bw=C=xyw|xAyBw=D
17 3 16 eqtr4i xA,yBD=zw|zxAx×Bw=C
18 2 17 eqtr4i zxAx×BC=xA,yBD