Metamath Proof Explorer


Theorem mpomulf

Description: Multiplication is an operation on complex numbers. Version of ax-mulf using maps-to notation, proved from the axioms of set theory and ax-mulcl . (Contributed by GG, 16-Mar-2025)

Ref Expression
Assertion mpomulf x,yxy:×

Proof

Step Hyp Ref Expression
1 eqid x,yxy=x,yxy
2 ovex xyV
3 1 2 fnmpoi x,yxyFn×
4 simpll xyz=xyx
5 simplr xyz=xyy
6 mulcl xyxy
7 eleq1a xyz=xyz
8 6 7 syl xyz=xyz
9 8 imp xyz=xyz
10 4 5 9 3jca xyz=xyxyz
11 10 ssoprab2i xyz|xyz=xyxyz|xyz
12 df-mpo x,yxy=xyz|xyz=xy
13 dfxp3 ××=xyz|xyz
14 11 12 13 3sstr4i x,yxy××
15 dff2 x,yxy:×x,yxyFn×x,yxy××
16 3 14 15 mpbir2an x,yxy:×