Metamath Proof Explorer


Theorem mpoxopn0yelv

Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017)

Ref Expression
Hypothesis mpoxopn0yelv.f F=xV,y1stxC
Assertion mpoxopn0yelv VXWYNVWFKKV

Proof

Step Hyp Ref Expression
1 mpoxopn0yelv.f F=xV,y1stxC
2 1 dmmpossx domFxVx×1stx
3 elfvdm NFVWKVWKdomF
4 df-ov VWFK=FVWK
5 3 4 eleq2s NVWFKVWKdomF
6 2 5 sselid NVWFKVWKxVx×1stx
7 fveq2 x=VW1stx=1stVW
8 7 opeliunxp2 VWKxVx×1stxVWVK1stVW
9 8 simprbi VWKxVx×1stxK1stVW
10 6 9 syl NVWFKK1stVW
11 op1stg VXWY1stVW=V
12 11 eleq2d VXWYK1stVWKV
13 10 12 imbitrid VXWYNVWFKKV