Metamath Proof Explorer


Theorem mpteqb

Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv . (Contributed by Mario Carneiro, 14-Nov-2014)

Ref Expression
Assertion mpteqb xABVxAB=xACxAB=C

Proof

Step Hyp Ref Expression
1 elex BVBV
2 1 ralimi xABVxABV
3 fneq1 xAB=xACxABFnAxACFnA
4 eqid xAB=xAB
5 4 mptfng xABVxABFnA
6 eqid xAC=xAC
7 6 mptfng xACVxACFnA
8 3 5 7 3bitr4g xAB=xACxABVxACV
9 8 biimpd xAB=xACxABVxACV
10 r19.26 xABVCVxABVxACV
11 nfmpt1 _xxAB
12 nfmpt1 _xxAC
13 11 12 nfeq xxAB=xAC
14 simpll xAB=xACxABVCVxAB=xAC
15 14 fveq1d xAB=xACxABVCVxABx=xACx
16 4 fvmpt2 xABVxABx=B
17 16 ad2ant2lr xAB=xACxABVCVxABx=B
18 6 fvmpt2 xACVxACx=C
19 18 ad2ant2l xAB=xACxABVCVxACx=C
20 15 17 19 3eqtr3d xAB=xACxABVCVB=C
21 20 exp31 xAB=xACxABVCVB=C
22 13 21 ralrimi xAB=xACxABVCVB=C
23 ralim xABVCVB=CxABVCVxAB=C
24 22 23 syl xAB=xACxABVCVxAB=C
25 10 24 biimtrrid xAB=xACxABVxACVxAB=C
26 25 expd xAB=xACxABVxACVxAB=C
27 9 26 mpdd xAB=xACxABVxAB=C
28 27 com12 xABVxAB=xACxAB=C
29 eqid A=A
30 mpteq12 A=AxAB=CxAB=xAC
31 29 30 mpan xAB=CxAB=xAC
32 28 31 impbid1 xABVxAB=xACxAB=C
33 2 32 syl xABVxAB=xACxAB=C