Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv . (Contributed by Mario Carneiro, 14-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | mpteqb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | 1 | ralimi | |
3 | fneq1 | |
|
4 | eqid | |
|
5 | 4 | mptfng | |
6 | eqid | |
|
7 | 6 | mptfng | |
8 | 3 5 7 | 3bitr4g | |
9 | 8 | biimpd | |
10 | r19.26 | |
|
11 | nfmpt1 | |
|
12 | nfmpt1 | |
|
13 | 11 12 | nfeq | |
14 | simpll | |
|
15 | 14 | fveq1d | |
16 | 4 | fvmpt2 | |
17 | 16 | ad2ant2lr | |
18 | 6 | fvmpt2 | |
19 | 18 | ad2ant2l | |
20 | 15 17 19 | 3eqtr3d | |
21 | 20 | exp31 | |
22 | 13 21 | ralrimi | |
23 | ralim | |
|
24 | 22 23 | syl | |
25 | 10 24 | biimtrrid | |
26 | 25 | expd | |
27 | 9 26 | mpdd | |
28 | 27 | com12 | |
29 | eqid | |
|
30 | mpteq12 | |
|
31 | 29 30 | mpan | |
32 | 28 31 | impbid1 | |
33 | 2 32 | syl | |