Metamath Proof Explorer


Theorem mptscmfsuppd

Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019) (Proof shortened by AV, 18-Oct-2019)

Ref Expression
Hypotheses mptscmfsuppd.b B=BaseP
mptscmfsuppd.s S=ScalarP
mptscmfsuppd.n ·˙=P
mptscmfsuppd.p φPLMod
mptscmfsuppd.x φXV
mptscmfsuppd.z φkXZB
mptscmfsuppd.a φA:XY
mptscmfsuppd.f φfinSupp0SA
Assertion mptscmfsuppd φfinSupp0PkXAk·˙Z

Proof

Step Hyp Ref Expression
1 mptscmfsuppd.b B=BaseP
2 mptscmfsuppd.s S=ScalarP
3 mptscmfsuppd.n ·˙=P
4 mptscmfsuppd.p φPLMod
5 mptscmfsuppd.x φXV
6 mptscmfsuppd.z φkXZB
7 mptscmfsuppd.a φA:XY
8 mptscmfsuppd.f φfinSupp0SA
9 2 a1i φS=ScalarP
10 fvexd φkXAkV
11 eqid 0P=0P
12 eqid 0S=0S
13 7 feqmptd φA=kXAk
14 13 8 eqbrtrrd φfinSupp0SkXAk
15 5 4 9 1 10 6 11 12 3 14 mptscmfsupp0 φfinSupp0PkXAk·˙Z