Metamath Proof Explorer


Theorem mrsubf

Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubccat.s S=mRSubstT
mrsubccat.r R=mRExT
Assertion mrsubf FranSF:RR

Proof

Step Hyp Ref Expression
1 mrsubccat.s S=mRSubstT
2 mrsubccat.r R=mRExT
3 n0i FranS¬ranS=
4 1 rnfvprc ¬TVranS=
5 3 4 nsyl2 FranSTV
6 eqid mVRT=mVRT
7 6 2 1 mrsubff TVS:R𝑝𝑚mVRTRR
8 frn S:R𝑝𝑚mVRTRRranSRR
9 5 7 8 3syl FranSranSRR
10 id FranSFranS
11 9 10 sseldd FranSFRR
12 elmapi FRRF:RR
13 11 12 syl FranSF:RR