Metamath Proof Explorer


Theorem msrtri

Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion msrtri MMetSpAXBXCXADCBDCADB

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 1 2 msmet2 MMetSpDX×XMetX
4 metrtri DX×XMetXAXBXCXADX×XCBDX×XCADX×XB
5 3 4 sylan MMetSpAXBXCXADX×XCBDX×XCADX×XB
6 simpr1 MMetSpAXBXCXAX
7 simpr3 MMetSpAXBXCXCX
8 6 7 ovresd MMetSpAXBXCXADX×XC=ADC
9 simpr2 MMetSpAXBXCXBX
10 9 7 ovresd MMetSpAXBXCXBDX×XC=BDC
11 8 10 oveq12d MMetSpAXBXCXADX×XCBDX×XC=ADCBDC
12 11 fveq2d MMetSpAXBXCXADX×XCBDX×XC=ADCBDC
13 6 9 ovresd MMetSpAXBXCXADX×XB=ADB
14 5 12 13 3brtr3d MMetSpAXBXCXADCBDCADB