Metamath Proof Explorer


Theorem msrtri

Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses mscl.x 𝑋 = ( Base ‘ 𝑀 )
mscl.d 𝐷 = ( dist ‘ 𝑀 )
Assertion msrtri ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mscl.x 𝑋 = ( Base ‘ 𝑀 )
2 mscl.d 𝐷 = ( dist ‘ 𝑀 )
3 1 2 msmet2 ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) )
4 metrtri ( ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) ) ≤ ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) )
5 3 4 sylan ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) ) ≤ ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) )
6 simpr1 ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → 𝐴𝑋 )
7 simpr3 ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → 𝐶𝑋 )
8 6 7 ovresd ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) = ( 𝐴 𝐷 𝐶 ) )
9 simpr2 ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → 𝐵𝑋 )
10 9 7 ovresd ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) = ( 𝐵 𝐷 𝐶 ) )
11 8 10 oveq12d ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) )
12 11 fveq2d ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) − ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐶 ) ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) )
13 6 9 ovresd ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )
14 5 12 13 3brtr3d ( ( 𝑀 ∈ MetSp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) )