Metamath Proof Explorer


Theorem muladd11

Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion muladd11 AB1+A1+B=1+A+B+AB

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 addcl 1A1+A
3 1 2 mpan A1+A
4 adddi 1+A1B1+A1+B=1+A1+1+AB
5 1 4 mp3an2 1+AB1+A1+B=1+A1+1+AB
6 3 5 sylan AB1+A1+B=1+A1+1+AB
7 3 mulridd A1+A1=1+A
8 7 adantr AB1+A1=1+A
9 adddir 1AB1+AB=1B+AB
10 1 9 mp3an1 AB1+AB=1B+AB
11 mullid B1B=B
12 11 adantl AB1B=B
13 12 oveq1d AB1B+AB=B+AB
14 10 13 eqtrd AB1+AB=B+AB
15 8 14 oveq12d AB1+A1+1+AB=1+A+B+AB
16 6 15 eqtrd AB1+A1+B=1+A+B+AB