Metamath Proof Explorer


Theorem mulcan2g

Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)

Ref Expression
Assertion mulcan2g ABCAC=BCA=BC=0

Proof

Step Hyp Ref Expression
1 mulcom ACAC=CA
2 1 3adant2 ABCAC=CA
3 mulcom BCBC=CB
4 3 3adant1 ABCBC=CB
5 2 4 eqeq12d ABCAC=BCCA=CB
6 mulcan1g CABCA=CBC=0A=B
7 6 3coml ABCCA=CBC=0A=B
8 orcom C=0A=BA=BC=0
9 7 8 bitrdi ABCCA=CBA=BC=0
10 5 9 bitrd ABCAC=BCA=BC=0