Metamath Proof Explorer


Theorem muldvds1

Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion muldvds1 KMNK MNKN

Proof

Step Hyp Ref Expression
1 zmulcl KMK M
2 1 anim1i KMNK MN
3 2 3impa KMNK MN
4 3simpb KMNKN
5 zmulcl xMx M
6 5 ancoms Mxx M
7 6 3ad2antl2 KMNxx M
8 zcn xx
9 zcn KK
10 zcn MM
11 mulass xKMxK M=xK M
12 mul32 xKMxK M=x MK
13 11 12 eqtr3d xKMxK M=x MK
14 8 9 10 13 syl3an xKMxK M=x MK
15 14 3coml KMxxK M=x MK
16 15 3expa KMxxK M=x MK
17 16 3adantl3 KMNxxK M=x MK
18 17 eqeq1d KMNxxK M=Nx MK=N
19 18 biimpd KMNxxK M=Nx MK=N
20 3 4 7 19 dvds1lem KMNK MNKN