Metamath Proof Explorer


Theorem mulgfn

Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mulgfn.b B=BaseG
mulgfn.t ·˙=G
Assertion mulgfn ·˙Fn×B

Proof

Step Hyp Ref Expression
1 mulgfn.b B=BaseG
2 mulgfn.t ·˙=G
3 eqid +G=+G
4 eqid 0G=0G
5 eqid invgG=invgG
6 1 3 4 5 2 mulgfval ·˙=n,xBifn=00Gif0<nseq1+G×xninvgGseq1+G×xn
7 fvex 0GV
8 fvex seq1+G×xnV
9 fvex invgGseq1+G×xnV
10 8 9 ifex if0<nseq1+G×xninvgGseq1+G×xnV
11 7 10 ifex ifn=00Gif0<nseq1+G×xninvgGseq1+G×xnV
12 6 11 fnmpoi ·˙Fn×B