Metamath Proof Explorer


Theorem mvdco

Description: Composing two permutations moves at most the union of the points. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion mvdco domFGIdomFIdomGI

Proof

Step Hyp Ref Expression
1 inundif GIGI=G
2 1 coeq2i FGIGI=FG
3 coundi FGIGI=FGIFGI
4 2 3 eqtr3i FG=FGIFGI
5 4 difeq1i FGI=FGIFGII
6 difundir FGIFGII=FGIIFGII
7 5 6 eqtri FGI=FGIIFGII
8 7 dmeqi domFGI=domFGIIFGII
9 dmun domFGIIFGII=domFGIIdomFGII
10 8 9 eqtri domFGI=domFGIIdomFGII
11 inss2 GII
12 coss2 GIIFGIFI
13 11 12 ax-mp FGIFI
14 cocnvcnv1 F-1-1I=FI
15 relcnv RelF-1-1
16 coi1 RelF-1-1F-1-1I=F-1-1
17 15 16 ax-mp F-1-1I=F-1-1
18 14 17 eqtr3i FI=F-1-1
19 cnvcnvss F-1-1F
20 18 19 eqsstri FIF
21 13 20 sstri FGIF
22 ssdif FGIFFGIIFI
23 dmss FGIIFIdomFGIIdomFI
24 21 22 23 mp2b domFGIIdomFI
25 difss FGIIFGI
26 dmss FGIIFGIdomFGIIdomFGI
27 25 26 ax-mp domFGIIdomFGI
28 dmcoss domFGIdomGI
29 27 28 sstri domFGIIdomGI
30 unss12 domFGIIdomFIdomFGIIdomGIdomFGIIdomFGIIdomFIdomGI
31 24 29 30 mp2an domFGIIdomFGIIdomFIdomGI
32 10 31 eqsstri domFGIdomFIdomGI