Metamath Proof Explorer


Theorem mvmulval

Description: Multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x ×˙=RmaVecMulMN
mvmulfval.b B=BaseR
mvmulfval.t ·˙=R
mvmulfval.r φRV
mvmulfval.m φMFin
mvmulfval.n φNFin
mvmulval.x φXBM×N
mvmulval.y φYBN
Assertion mvmulval φX×˙Y=iMRjNiXj·˙Yj

Proof

Step Hyp Ref Expression
1 mvmulfval.x ×˙=RmaVecMulMN
2 mvmulfval.b B=BaseR
3 mvmulfval.t ·˙=R
4 mvmulfval.r φRV
5 mvmulfval.m φMFin
6 mvmulfval.n φNFin
7 mvmulval.x φXBM×N
8 mvmulval.y φYBN
9 1 2 3 4 5 6 mvmulfval φ×˙=xBM×N,yBNiMRjNixj·˙yj
10 oveq x=Xixj=iXj
11 fveq1 y=Yyj=Yj
12 10 11 oveqan12d x=Xy=Yixj·˙yj=iXj·˙Yj
13 12 adantl φx=Xy=Yixj·˙yj=iXj·˙Yj
14 13 mpteq2dv φx=Xy=YjNixj·˙yj=jNiXj·˙Yj
15 14 oveq2d φx=Xy=YRjNixj·˙yj=RjNiXj·˙Yj
16 15 mpteq2dv φx=Xy=YiMRjNixj·˙yj=iMRjNiXj·˙Yj
17 5 mptexd φiMRjNiXj·˙YjV
18 9 16 7 8 17 ovmpod φX×˙Y=iMRjNiXj·˙Yj