Metamath Proof Explorer


Theorem mvmulfv

Description: A cell/element in the vector resulting from a multiplication of a vector with a matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mvmulfval.x ×˙=RmaVecMulMN
mvmulfval.b B=BaseR
mvmulfval.t ·˙=R
mvmulfval.r φRV
mvmulfval.m φMFin
mvmulfval.n φNFin
mvmulval.x φXBM×N
mvmulval.y φYBN
mvmulfv.i φIM
Assertion mvmulfv φX×˙YI=RjNIXj·˙Yj

Proof

Step Hyp Ref Expression
1 mvmulfval.x ×˙=RmaVecMulMN
2 mvmulfval.b B=BaseR
3 mvmulfval.t ·˙=R
4 mvmulfval.r φRV
5 mvmulfval.m φMFin
6 mvmulfval.n φNFin
7 mvmulval.x φXBM×N
8 mvmulval.y φYBN
9 mvmulfv.i φIM
10 1 2 3 4 5 6 7 8 mvmulval φX×˙Y=iMRjNiXj·˙Yj
11 oveq1 i=IiXj=IXj
12 11 adantl φi=IiXj=IXj
13 12 oveq1d φi=IiXj·˙Yj=IXj·˙Yj
14 13 mpteq2dv φi=IjNiXj·˙Yj=jNIXj·˙Yj
15 14 oveq2d φi=IRjNiXj·˙Yj=RjNIXj·˙Yj
16 ovexd φRjNIXj·˙YjV
17 10 15 9 16 fvmptd φX×˙YI=RjNIXj·˙Yj