Step |
Hyp |
Ref |
Expression |
1 |
|
mvmulfval.x |
|- .X. = ( R maVecMul <. M , N >. ) |
2 |
|
mvmulfval.b |
|- B = ( Base ` R ) |
3 |
|
mvmulfval.t |
|- .x. = ( .r ` R ) |
4 |
|
mvmulfval.r |
|- ( ph -> R e. V ) |
5 |
|
mvmulfval.m |
|- ( ph -> M e. Fin ) |
6 |
|
mvmulfval.n |
|- ( ph -> N e. Fin ) |
7 |
|
mvmulval.x |
|- ( ph -> X e. ( B ^m ( M X. N ) ) ) |
8 |
|
mvmulval.y |
|- ( ph -> Y e. ( B ^m N ) ) |
9 |
|
mvmulfv.i |
|- ( ph -> I e. M ) |
10 |
1 2 3 4 5 6 7 8
|
mvmulval |
|- ( ph -> ( X .X. Y ) = ( i e. M |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) ) ) |
11 |
|
oveq1 |
|- ( i = I -> ( i X j ) = ( I X j ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ i = I ) -> ( i X j ) = ( I X j ) ) |
13 |
12
|
oveq1d |
|- ( ( ph /\ i = I ) -> ( ( i X j ) .x. ( Y ` j ) ) = ( ( I X j ) .x. ( Y ` j ) ) ) |
14 |
13
|
mpteq2dv |
|- ( ( ph /\ i = I ) -> ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) = ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) |
15 |
14
|
oveq2d |
|- ( ( ph /\ i = I ) -> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( Y ` j ) ) ) ) = ( R gsum ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) ) |
16 |
|
ovexd |
|- ( ph -> ( R gsum ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) e. _V ) |
17 |
10 15 9 16
|
fvmptd |
|- ( ph -> ( ( X .X. Y ) ` I ) = ( R gsum ( j e. N |-> ( ( I X j ) .x. ( Y ` j ) ) ) ) ) |