Metamath Proof Explorer


Theorem mxidlnzrb

Description: A ring is nonzero if and only if it has maximal ideals. (Contributed by Thierry Arnoux, 10-Apr-2024)

Ref Expression
Assertion mxidlnzrb R Ring R NzRing m m MaxIdeal R

Proof

Step Hyp Ref Expression
1 krull R NzRing m m MaxIdeal R
2 1 adantl R Ring R NzRing m m MaxIdeal R
3 19.42v m R Ring m MaxIdeal R R Ring m m MaxIdeal R
4 eqid Base R = Base R
5 4 mxidlnzr R Ring m MaxIdeal R R NzRing
6 5 exlimiv m R Ring m MaxIdeal R R NzRing
7 3 6 sylbir R Ring m m MaxIdeal R R NzRing
8 2 7 impbida R Ring R NzRing m m MaxIdeal R