Metamath Proof Explorer


Theorem n0lpligALT

Description: Alternate version of n0lplig using the predicate e/ instead of -. e. and whose proof bypasses nsnlplig . (Contributed by AV, 28-Nov-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion n0lpligALT GPligG

Proof

Step Hyp Ref Expression
1 eqid G=G
2 1 l2p GPligGaGbGabab
3 noel ¬a
4 3 pm2.21i aG
5 4 3ad2ant2 ababG
6 5 a1i aGbGababG
7 6 rexlimivv aGbGababG
8 2 7 syl GPligGG
9 simpr GPligGG
10 8 9 pm2.61danel GPligG