Metamath Proof Explorer


Theorem nadd1rabtr

Description: The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabtr Could not format assertion : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( x +no B ) e. C } ) with typecode |-

Proof

Step Hyp Ref Expression
1 nadd2rabtr Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( B +no x ) e. C } ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( B +no x ) e. C } ) with typecode |-
2 simpl2 OrdABOnCOnxABOn
3 ordelon OrdAxAxOn
4 3 3ad2antl1 OrdABOnCOnxAxOn
5 naddcom Could not format ( ( B e. On /\ x e. On ) -> ( B +no x ) = ( x +no B ) ) : No typesetting found for |- ( ( B e. On /\ x e. On ) -> ( B +no x ) = ( x +no B ) ) with typecode |-
6 2 4 5 syl2anc Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( B +no x ) = ( x +no B ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( B +no x ) = ( x +no B ) ) with typecode |-
7 6 eleq1d Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C <-> ( x +no B ) e. C ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C <-> ( x +no B ) e. C ) ) with typecode |-
8 7 rabbidva Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } ) with typecode |-
9 treq Could not format ( { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } -> ( Tr { x e. A | ( B +no x ) e. C } <-> Tr { x e. A | ( x +no B ) e. C } ) ) : No typesetting found for |- ( { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } -> ( Tr { x e. A | ( B +no x ) e. C } <-> Tr { x e. A | ( x +no B ) e. C } ) ) with typecode |-
10 8 9 syl Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> ( Tr { x e. A | ( B +no x ) e. C } <-> Tr { x e. A | ( x +no B ) e. C } ) ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> ( Tr { x e. A | ( B +no x ) e. C } <-> Tr { x e. A | ( x +no B ) e. C } ) ) with typecode |-
11 1 10 mpbid Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( x +no B ) e. C } ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> Tr { x e. A | ( x +no B ) e. C } ) with typecode |-