Metamath Proof Explorer


Theorem nat1st2nd

Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N=CNatD
nat1st2nd.2 φAFNG
Assertion nat1st2nd φA1stF2ndFN1stG2ndG

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 nat1st2nd.2 φAFNG
3 relfunc RelCFuncD
4 1 natrcl AFNGFCFuncDGCFuncD
5 2 4 syl φFCFuncDGCFuncD
6 5 simpld φFCFuncD
7 1st2nd RelCFuncDFCFuncDF=1stF2ndF
8 3 6 7 sylancr φF=1stF2ndF
9 5 simprd φGCFuncD
10 1st2nd RelCFuncDGCFuncDG=1stG2ndG
11 3 9 10 sylancr φG=1stG2ndG
12 8 11 oveq12d φFNG=1stF2ndFN1stG2ndG
13 2 12 eleqtrd φA1stF2ndFN1stG2ndG