Metamath Proof Explorer


Theorem ncolncol

Description: Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tglineintmo.p P=BaseG
tglineintmo.i I=ItvG
tglineintmo.l L=Line𝒢G
tglineintmo.g φG𝒢Tarski
tglineinteq.a φAP
tglineinteq.b φBP
tglineinteq.c φCP
tglineinteq.d φDP
tglineinteq.e φ¬ABLCB=C
ncolncol.1 φDALB
ncolncol.2 φDB
Assertion ncolncol φ¬DBLCB=C

Proof

Step Hyp Ref Expression
1 tglineintmo.p P=BaseG
2 tglineintmo.i I=ItvG
3 tglineintmo.l L=Line𝒢G
4 tglineintmo.g φG𝒢Tarski
5 tglineinteq.a φAP
6 tglineinteq.b φBP
7 tglineinteq.c φCP
8 tglineinteq.d φDP
9 tglineinteq.e φ¬ABLCB=C
10 ncolncol.1 φDALB
11 ncolncol.2 φDB
12 4 adantr φDBLCB=CG𝒢Tarski
13 5 adantr φDBLCB=CAP
14 6 adantr φDBLCB=CBP
15 7 adantr φDBLCB=CCP
16 4 ad2antrr φDBLCB=CCDLBG𝒢Tarski
17 5 ad2antrr φDBLCB=CCDLBAP
18 6 ad2antrr φDBLCB=CCDLBBP
19 7 ad2antrr φDBLCB=CCDLBCP
20 1 3 2 4 5 6 10 tglngne φAB
21 20 ad2antrr φDBLCB=CCDLBAB
22 8 ad2antrr φDBLCB=CCDLBDP
23 11 necomd φBD
24 23 ad2antrr φDBLCB=CCDLBBD
25 simpr φDBLCB=CCDLBCDLB
26 1 2 3 16 18 22 19 24 25 lncom φDBLCB=CCDLBCBLD
27 20 necomd φBA
28 1 2 3 4 6 5 8 27 10 lncom φDBLA
29 1 2 3 4 6 5 27 8 11 28 tglineelsb2 φBLA=BLD
30 29 ad2antrr φDBLCB=CCDLBBLA=BLD
31 26 30 eleqtrrd φDBLCB=CCDLBCBLA
32 1 2 3 16 17 18 19 21 31 lncom φDBLCB=CCDLBCALB
33 32 orcd φDBLCB=CCDLBCALBA=B
34 simpr φDBLCB=CD=BD=B
35 11 ad2antrr φDBLCB=CD=BDB
36 34 35 pm2.21ddne φDBLCB=CD=BCALBA=B
37 8 adantr φDBLCB=CDP
38 simpr φDBLCB=CDBLCB=C
39 1 3 2 12 14 15 37 38 colrot2 φDBLCB=CCDLBD=B
40 33 36 39 mpjaodan φDBLCB=CCALBA=B
41 1 3 2 12 13 14 15 40 colrot1 φDBLCB=CABLCB=C
42 9 41 mtand φ¬DBLCB=C