Description: Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglineintmo.p | |
|
tglineintmo.i | |
||
tglineintmo.l | |
||
tglineintmo.g | |
||
tglineinteq.a | |
||
tglineinteq.b | |
||
tglineinteq.c | |
||
tglineinteq.d | |
||
tglineinteq.e | |
||
ncolncol.1 | |
||
ncolncol.2 | |
||
Assertion | ncolncol | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | |
|
2 | tglineintmo.i | |
|
3 | tglineintmo.l | |
|
4 | tglineintmo.g | |
|
5 | tglineinteq.a | |
|
6 | tglineinteq.b | |
|
7 | tglineinteq.c | |
|
8 | tglineinteq.d | |
|
9 | tglineinteq.e | |
|
10 | ncolncol.1 | |
|
11 | ncolncol.2 | |
|
12 | 4 | adantr | |
13 | 5 | adantr | |
14 | 6 | adantr | |
15 | 7 | adantr | |
16 | 4 | ad2antrr | |
17 | 5 | ad2antrr | |
18 | 6 | ad2antrr | |
19 | 7 | ad2antrr | |
20 | 1 3 2 4 5 6 10 | tglngne | |
21 | 20 | ad2antrr | |
22 | 8 | ad2antrr | |
23 | 11 | necomd | |
24 | 23 | ad2antrr | |
25 | simpr | |
|
26 | 1 2 3 16 18 22 19 24 25 | lncom | |
27 | 20 | necomd | |
28 | 1 2 3 4 6 5 8 27 10 | lncom | |
29 | 1 2 3 4 6 5 27 8 11 28 | tglineelsb2 | |
30 | 29 | ad2antrr | |
31 | 26 30 | eleqtrrd | |
32 | 1 2 3 16 17 18 19 21 31 | lncom | |
33 | 32 | orcd | |
34 | simpr | |
|
35 | 11 | ad2antrr | |
36 | 34 35 | pm2.21ddne | |
37 | 8 | adantr | |
38 | simpr | |
|
39 | 1 3 2 12 14 15 37 38 | colrot2 | |
40 | 33 36 39 | mpjaodan | |
41 | 1 3 2 12 13 14 15 40 | colrot1 | |
42 | 9 41 | mtand | |