Metamath Proof Explorer


Theorem ndmaovg

Description: The value of an operation outside its domain, analogous to ndmovg . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion ndmaovg domF=R×S¬ARBSAFB=V

Proof

Step Hyp Ref Expression
1 opelxp ABR×SARBS
2 eleq2 R×S=domFABR×SABdomF
3 2 eqcoms domF=R×SABR×SABdomF
4 1 3 bitr3id domF=R×SARBSABdomF
5 4 notbid domF=R×S¬ARBS¬ABdomF
6 5 biimpa domF=R×S¬ARBS¬ABdomF
7 ndmaov ¬ABdomFAFB=V
8 6 7 syl domF=R×S¬ARBSAFB=V