Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ndmovcom
Next ⟩
ndmovass
Metamath Proof Explorer
Ascii
Unicode
Theorem
ndmovcom
Description:
Any operation is commutative outside its domain.
(Contributed by
NM
, 24-Aug-1995)
Ref
Expression
Hypothesis
ndmov.1
⊢
dom
⁡
F
=
S
×
S
Assertion
ndmovcom
⊢
¬
A
∈
S
∧
B
∈
S
→
A
F
B
=
B
F
A
Proof
Step
Hyp
Ref
Expression
1
ndmov.1
⊢
dom
⁡
F
=
S
×
S
2
1
ndmov
⊢
¬
A
∈
S
∧
B
∈
S
→
A
F
B
=
∅
3
ancom
⊢
A
∈
S
∧
B
∈
S
↔
B
∈
S
∧
A
∈
S
4
1
ndmov
⊢
¬
B
∈
S
∧
A
∈
S
→
B
F
A
=
∅
5
3
4
sylnbi
⊢
¬
A
∈
S
∧
B
∈
S
→
B
F
A
=
∅
6
2
5
eqtr4d
⊢
¬
A
∈
S
∧
B
∈
S
→
A
F
B
=
B
F
A