Metamath Proof Explorer


Theorem negdvdsb

Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion negdvdsb MNMN- MN

Proof

Step Hyp Ref Expression
1 id MNMN
2 znegcl MM
3 2 anim1i MNMN
4 znegcl xx
5 4 adantl MNxx
6 zcn xx
7 zcn MM
8 mul2neg xMx- M=x M
9 6 7 8 syl2anr Mxx- M=x M
10 9 adantlr MNxx- M=x M
11 10 eqeq1d MNxx- M=Nx M=N
12 11 biimprd MNxx M=Nx- M=N
13 1 3 5 12 dvds1lem MNMN- MN
14 mulneg12 xMx M=x- M
15 6 7 14 syl2anr Mxx M=x- M
16 15 adantlr MNxx M=x- M
17 16 eqeq1d MNxx M=Nx- M=N
18 17 biimprd MNxx- M=Nx M=N
19 3 1 5 18 dvds1lem MN- MNMN
20 13 19 impbid MNMN- MN