Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | negdvdsb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | znegcl | |
|
3 | 2 | anim1i | |
4 | znegcl | |
|
5 | 4 | adantl | |
6 | zcn | |
|
7 | zcn | |
|
8 | mul2neg | |
|
9 | 6 7 8 | syl2anr | |
10 | 9 | adantlr | |
11 | 10 | eqeq1d | |
12 | 11 | biimprd | |
13 | 1 3 5 12 | dvds1lem | |
14 | mulneg12 | |
|
15 | 6 7 14 | syl2anr | |
16 | 15 | adantlr | |
17 | 16 | eqeq1d | |
18 | 17 | biimprd | |
19 | 3 1 5 18 | dvds1lem | |
20 | 13 19 | impbid | |