Metamath Proof Explorer


Theorem nelbOLDOLD

Description: Obsolete version of nelb as of 23-Jan-2024. (Contributed by Thierry Arnoux, 20-Nov-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nelbOLDOLD ¬ A B x B x A

Proof

Step Hyp Ref Expression
1 df-ral x B ¬ x = A x x B ¬ x = A
2 df-ne x A ¬ x = A
3 2 ralbii x B x A x B ¬ x = A
4 dfclel A B x x = A x B
5 4 notbii ¬ A B ¬ x x = A x B
6 alnex x ¬ x = A x B ¬ x x = A x B
7 imnan x B ¬ x = A ¬ x B x = A
8 ancom x B x = A x = A x B
9 8 notbii ¬ x B x = A ¬ x = A x B
10 7 9 bitr2i ¬ x = A x B x B ¬ x = A
11 10 albii x ¬ x = A x B x x B ¬ x = A
12 5 6 11 3bitr2i ¬ A B x x B ¬ x = A
13 1 3 12 3bitr4ri ¬ A B x B x A