Metamath Proof Explorer


Theorem nelrnmpt

Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelrnmpt.x xφ
nelrnmpt.f F=xAB
nelrnmpt.c φCV
nelrnmpt.n φxACB
Assertion nelrnmpt φ¬CranF

Proof

Step Hyp Ref Expression
1 nelrnmpt.x xφ
2 nelrnmpt.f F=xAB
3 nelrnmpt.c φCV
4 nelrnmpt.n φxACB
5 4 neneqd φxA¬C=B
6 5 ex φxA¬C=B
7 1 6 ralrimi φxA¬C=B
8 ralnex xA¬C=B¬xAC=B
9 7 8 sylib φ¬xAC=B
10 2 elrnmpt CVCranFxAC=B
11 3 10 syl φCranFxAC=B
12 9 11 mtbird φ¬CranF